
Obfuscation
Presentation

Adrien Guinet, Pierrick Brunet, Juan Manuel Martinez and Béatrice Creusillet,
Serge Guelton

Table of Contents

1 Introduction
What is obfuscation?
Concrete examples

2 Talks

Table of Contents

1 Introduction
What is obfuscation?
Concrete examples

2 Talks

What is obfuscation?

What’s to protect?

Code and data of an application

Especially secrets within a compiled binary (disruptive algorithms, key
materials...)

Attack model

The attacker has full read/write access to the binary

The attacker has full control over the operating system and the hardware
where the binary is running

The application runs with the less possible privileges, and in user-land (on
systems where it makes sens (e.g.: any modern x86 OS))

The worst situation possible: the attacker has full control over the hardware,
kernel and application

Principles of obfuscation

Goals of obfuscations

Protect data/code from being recovered/tampered with, in the described
attack model

At reasonable cost (performance/memory) for the defender

What (we hope) to gain

What we (probably) pay

Principles of obfuscation

Goals of obfuscations

What (we hope) to gain

Slow down reverse engineering (have it cost a lot)

Protect intellectual properties (code, algorithms, protocols. . .)

Protect data (secret keys, constants. . .)

What we (probably) pay

Principles of obfuscation

Goals of obfuscations

What (we hope) to gain

Slow down reverse engineering (have it cost a lot)

Protect intellectual properties (code, algorithms, protocols. . .)

Protect data (secret keys, constants. . .)

What we (probably) pay

Slower execution

Bigger binary

Biggest memory consumption

Principles of obfuscation

Goals of obfuscations

What (we hope) to gain

Slow down reverse engineering (have it cost a lot)

Protect intellectual properties (code, algorithms, protocols. . .)

Protect data (secret keys, constants. . .)

What we (probably) pay

Slower execution

Bigger binary

Biggest memory consumption

Make the attacker pay much more than the defender!

Table of Contents

1 Introduction
What is obfuscation?
Concrete examples

2 Talks

Concrete example (1)
Protocol protection

Skype

On-the-fly code decryption

Anti-debug

Integrity protection

Time checking

Obfuscations: junk code, exceptions redirections, indirect calls
computations. . .

Silver Needle in the Skype by Philippe Biondi et Fabrice Desclaux, BlackHat 2006

Concrete example (2)
Authentication keys protection

Dropbox

Packed Python application

Ciphered bytecode

Opcode permutation

Modified Python runtime

Looking inside the (Drop)Box by Dhiru Kholia et Przemyslaw W egrzyn, WOOT
2013

Concrete example (3)
Protocol protection

iMessage

The goal is to protect the iMessage protocol

Heavily obfuscated application

Uses a home-made Apple obfuscator

No known third-party client

Table of Contents

1 Introduction

2 Talks

Talks

Talks

Building a Virtual Machine obfuscation + Questions

Gaining fine-grain control over pass management + Questions

Building a Virtual Machine
obfuscation

Manuel Carrasco

implementing a VM obfuscation

preparing a reverse engineering challenge

challenge results

studying attacker tools

implementing countermeasures

The virtual machine
obfuscation

A virtual machine as an obfuscation technique
● A virtual machine is an interpreter of certain set of custom instructions (bitcodes).

// assume there is no
optimization of any kind!
void top_secret(){

uint8_t* p = 0xABCD;
uint8_t a = 50;
uint8_t b = 25;

uint8_t sum = a + b;
*p = sum;

}

LLVM

add store halt

 Execution loop

Instruction handlers

PC

VM registers

function to be obfuscated obfuscated function

The VM during execution time

Instruction 1 Instruction 2 Halt

PC Execution loop

Virtual machine registers

Instruction handlers

50 25 0x...

r0 r1 r2 r3

add r2, r0, r1 store r3, r2

The VM during execution time

Instruction 1 Instruction 2 Halt

PC Execution loop

Virtual machine registers

Instruction handlers

50 25 0x...

r0 r1 r2 r3

add r2, r0, r1 store r3, r2

The VM during execution time

Instruction 1 Instruction 2 Halt

PC Execution loop

Virtual machine registers

Instruction handlers

50 25 0x...

r0 r1 r2 r3

add r2, r0, r1 store r3, r2

The VM during execution time

Instruction 1 Instruction 2 Halt

PC Execution loop

Virtual machine registers

Instruction handlers

50 25 75 0x...

r0 r1 r2 r3

add r2, r0, r1 store r3, r2

The VM during execution time

Instruction 1 Instruction 2 Halt

PC Execution loop

Virtual machine registers

Instruction handlers

50 25 75 0x...

r0 r1 r2 r3

add r2, r0, r1 store r3, r2

Pros & cons

Usefulness of the virtualization technique

Matrix multiplication Obfuscated code

Drawbacks of the virtualization technique

● Performance penalties
○ not directly executing the code
○ anyway every obfuscation hurts the performance

● Once a reverser gets a considerable understanding of our virtual architecture
the obfuscation becomes pointless.

Testing the obfuscation

Internal challenge

#define MAGIC_NUMBER 0123456789

bool OBFUSCATE level0(char const* key)
{

 if (hash(key) == MAGIC_NUMBER)
 return true;

 return false;
}

Challenge code:

Feedback

Traditional
attack

IDA disassembler

only identified parts of
the VM

manual procedure

Traditional
attack

Alternative
attack #1

solved the challenge

IDA disassembler

Dynamic Symbolic Execution

only identified parts of
the VM

manual procedure

semi-automatic procedure

Traditional
attack

only identified parts of
the VM

Alternative
attack #1

solved the challenge

IDA disassembler

Dynamic Symbolic Execution

Alternative
attack #2

new binary without virtual
machine obfuscation

Devirtualization technique on
top of Triton

semi-automatic procedure

automatic procedure

manual procedure

Countermeasures

New compiler transformation

lookup tables
Triton’s memory

accesses modelling

domain divider
Devirtualization’s
reachable path

exploration

new obfuscation

new obfuscation

breaks

breaks

Lookup tables

Lookup tables

int a = b & c; int a = and_table[b][c];

● and_table is an array generated at compilation time

● memory access based on input is hard for Triton’s DSE

● ‘&’ op is not done during executing time

● reverser could need to understand meaning of the constants

Lookup tables

● table’s size is huge for 32 bits values: aprox. 36893488 terabytes!

● & op table is easily understandable

int a = b & c; int a = and_table[b][c];

‘&’ table possible sizes

Can we use the 4 bit table to compute operations in 32 bits? Yes

operand’s size (bits) table size

32 36893488 terabytes

16 4,3 gigabytes

8 32,8 kilobytes

4 64 bytes

2 2 bytes

Folding an instruction chain

int A = P0 | P1;
int B = P2 ^ A;
int C = B ^ P3;

char chain_2_bits[][][][] = {...};

Triton’s DSE

Dynamic symbolic execution in Triton
Registers set Symbolic expressions

Concrete values

Memory set

mov [rbp+var_10], 0

inc [rbp+var_10]

call getchar

mov edx, [rbp + eax * 4]

Dynamic symbolic execution in Triton
Registers set Symbolic expressions

Concrete values

Memory set

mov [rbp+var_10], 0

inc [rbp+var_10]

call getchar

mov edx, [rbp + eax * 4]

φ_1 = 0

0xA8

rbp=0x98

mem[0xA8]=0x0

Dynamic symbolic execution in Triton
Registers set Symbolic expressions

Concrete values

Memory set

mov [rbp+var_10], 0

inc [rbp+var_10]

call getchar

mov edx, [rbp + eax * 4]

φ_1 = 0

φ_2 = φ_1+1

0xA8

rbp=0x98

mem[0xA8]=0x1

Dynamic symbolic execution in Triton
Registers set Symbolic expressions

Concrete values

Memory set

mov [rbp+var_10], 0

inc [rbp+var_10]

call getchar

mov edx, [rbp + eax * 4]

φ_1 = 0

φ_2 = φ_1+1

φ_3 = Sym_Var

0xA8

rbp=0x98

mem[0xA8]=0x1

eax=0x4

eax

assume getchar returns 0x4 in eax

Dynamic symbolic execution in Triton
Registers set Symbolic expressions

Concrete values

Memory set

mov [rbp+var_10], 0

inc [rbp+var_10]

call getchar

mov edx, [rbp + eax * 4]

φ_1 = 0

φ_2 = φ_1+1

φ_3 = Sym_Var

0xA8

eax

rbp + eax * 4 = 0xA8

edx

rbp=0x98

mem[0xA8]=0x1

eax=0x4

edx=0x1

Domain divider

Domain divider: adding reachable paths

1. Split the domain of a partial computation of the result
2. On each path recompute the partial computation

uint32 interm_computation = a + b;

Intermediate computation in our program

Why is it effective against
the devirtualization attack?

Why is it effective against
the devirtualization attack?

• The devirtualization must explore every reachable path by
generating concrete input using an SMT solver.

Testing the new paths

unsigned long SECRET(unsigned long input) {

 unsigned char *data = (unsigned char*)&input;
 size_t len = sizeof(input);
 uint32_t a = 1, b = 0;
 size_t index;

 /* Process each byte of the data in order */
 for (index = 0; index < len; ++index) {
 a = (a + data[index]) % MOD_ADLER;
 b = add(b, a) % MOD_ADLER;
 }

 return (b << 16) | a;
}

not obfuscated obfuscated

finished? yes timeout (10 minutes)

Achievements

lookup tables
obfuscation

virtual machine
obfuscation

input
code

obfuscated
code

domain divider
obfuscation

Achievements

Future work
Implement countermeasures against other types of dynamic analysis such as dynamic taint
analysis

Gaining Fine-Grain Control over Pass Management

Béatrice Creusillet, Adrien Guinet, Pierrick Brunet,
Juan Manuel Martinez and Serge Guelton

Beyond VM Obfuscation

prog.ll opt lookup tables
obfuscation

VM
obfuscation

{lookup tables}

{VMbitcodes}

{handlers,
VMevaluator}

Epona: an LLVM IR obfuscator

Source LLVM IR Obj Exe

Generic obfuscator

pass ipass 1 pass n

obfuscations

? ?

performance

protection

vs.

Epona: an LLVM IR obfuscator

Source LLVM IR Obj Exe

Generic obfuscator

pass ipass 1 pass n

obfuscations

? ?

performance

protection

vs.

Obfuscation/optimizations pass scheduling: Challenges

The code is indeed obfuscated

Previous passes don’t hinder obfuscations

Next optimization passes don’t deobfuscate the generated code

No invalid code is generated

Obfuscations are only applied to inputs meeting certain criteria

No uncompatible obfuscations are applied to a Function or Module.

Generated code meets performance expectations

Performance impact is hard to infer statically

Obfuscate only when actually necessary

Compilation time remains acceptable

Run obfuscations/optimizations only when necessary

Obfuscation/optimizations pass scheduling: Challenges

The code is indeed obfuscated

Previous passes don’t hinder obfuscations

Next optimization passes don’t deobfuscate the generated code

No invalid code is generated

Obfuscations are only applied to inputs meeting certain criteria

No uncompatible obfuscations are applied to a Function or Module.

Generated code meets performance expectations

Performance impact is hard to infer statically

Obfuscate only when actually necessary

Compilation time remains acceptable

Run obfuscations/optimizations only when necessary

Obfuscation/optimizations pass scheduling: Challenges

The code is indeed obfuscated

Previous passes don’t hinder obfuscations

Next optimization passes don’t deobfuscate the generated code

No invalid code is generated

Obfuscations are only applied to inputs meeting certain criteria

No uncompatible obfuscations are applied to a Function or Module.

Generated code meets performance expectations

Performance impact is hard to infer statically

Obfuscate only when actually necessary

Compilation time remains acceptable

Run obfuscations/optimizations only when necessary

Obfuscation/optimizations pass scheduling: Challenges

The code is indeed obfuscated

Previous passes don’t hinder obfuscations

Next optimization passes don’t deobfuscate the generated code

No invalid code is generated

Obfuscations are only applied to inputs meeting certain criteria

No uncompatible obfuscations are applied to a Function or Module.

Generated code meets performance expectations

Performance impact is hard to infer statically

Obfuscate only when actually necessary

Compilation time remains acceptable

Run obfuscations/optimizations only when necessary

Obfuscation/optimizations pass scheduling: Challenges

The code is indeed obfuscated

Previous passes don’t hinder obfuscations

Next optimization passes don’t deobfuscate the generated code

No invalid code is generated

Obfuscations are only applied to inputs meeting certain criteria

No uncompatible obfuscations are applied to a Function or Module.

Generated code meets performance expectations

Performance impact is hard to infer statically

Obfuscate only when actually necessary

Compilation time remains acceptable

Run obfuscations/optimizations only when necessary

What about opt?

prog.ll Opt.
CFG

flattening
Opaque

Constants

Post
Optimizations

prog.o

> opt -O2 -call -graph -flattening \

-opaque -constants -opaque -constants -ratio =0.1 \

-post -optimize -post -optimize -level =2 my_prog.ll

Linear pass chaining

Passes are applied on all functions

Pass options apply to every invocations of the pass

An evolution over opt: optsh

New features

Select functions on which to
apply passes

Set/unset options

set opaque -constant -ratio =0.1

apply opaque -constant on foo

apply cfg -flattening on bar

reset opaque -constant -ratio

apply opaque -constant on bar

set post -optimize -level=2

apply post -optimize

But still. . .

No control over new resources produced by passes.

No mean to apply passes conditionaly

Property-based pass scheduling

Properties are associated to functions
Properties aware passes:

wrap raw passes
transform only the input functions satifying a predicate checking the propeties
also transform the associated properties

Ex: apply LLVM post-optimizations solely on obfuscated functions

(f, rand), {} obfuscate

obfuscated(f, rand),
{to opt}

(f, rand), {}

y

n

to opt
∈ props?

post
opt

y

optimized(
obfuscated(f, rand)),

{}

(f, rand), {}
n

In: Combining Obfuscation and Optimizations in the Real World, Scam 2018, Madrid, Spain
Serge Guelton, Adrien Guinet, Pierrick Brunet, Juan Manuel Martinez, Fabien Dagnat and Nicolas Szlifierski,

Property-based pass scheduling

Properties are associated to functions
Properties aware passes:

wrap raw passes
transform only the input functions satifying a predicate checking the propeties
also transform the associated properties

Ex: apply LLVM post-optimizations solely on obfuscated functions

(f, rand), {} obfuscate

obfuscated(f, rand),
{to opt}

(f, rand), {}

y

n

to opt
∈ props?

post
opt

y

optimized(
obfuscated(f, rand)),

{}

(f, rand), {}
n

In: Combining Obfuscation and Optimizations in the Real World, Scam 2018, Madrid, Spain
Serge Guelton, Adrien Guinet, Pierrick Brunet, Juan Manuel Martinez, Fabien Dagnat and Nicolas Szlifierski,

Property-based pass scheduling

Properties are associated to functions
Properties aware passes:

wrap raw passes
transform only the input functions satifying a predicate checking the propeties
also transform the associated properties

Ex: apply LLVM post-optimizations solely on obfuscated functions

(f, rand), {} obfuscate

obfuscated(f, rand),
{to opt}

(f, rand), {}

y

n

to opt
∈ props?

post
opt

y

optimized(
obfuscated(f, rand)),

{}

(f, rand), {}
n

In: Combining Obfuscation and Optimizations in the Real World, Scam 2018, Madrid, Spain
Serge Guelton, Adrien Guinet, Pierrick Brunet, Juan Manuel Martinez, Fabien Dagnat and Nicolas Szlifierski,

Property-based pass scheduling

Properties are associated to functions
Properties aware passes:

wrap raw passes
transform only the input functions satifying a predicate checking the propeties
also transform the associated properties

Ex: apply LLVM post-optimizations solely on obfuscated functions

(f, rand), {} obfuscate

obfuscated(f, rand),
{to opt}

(f, rand), {}

y

n

to opt
∈ props?

post
opt

y

optimized(
obfuscated(f, rand)),

{}

(f, rand), {}
n

In: Combining Obfuscation and Optimizations in the Real World, Scam 2018, Madrid, Spain
Serge Guelton, Adrien Guinet, Pierrick Brunet, Juan Manuel Martinez, Fabien Dagnat and Nicolas Szlifierski,

Property-based pass scheduling

Properties are associated to functions
Properties aware passes:

wrap raw passes
transform only the input functions satifying a predicate checking the propeties
also transform the associated properties

Ex: apply LLVM post-optimizations solely on obfuscated functions

(f, rand), {} obfuscate

obfuscated(f, rand),
{to opt}

(f, rand), {}

y

n

to opt
∈ props?

post
opt

y

optimized(
obfuscated(f, rand)),

{}

(f, rand), {}
n

In: Combining Obfuscation and Optimizations in the Real World, Scam 2018, Madrid, Spain
Serge Guelton, Adrien Guinet, Pierrick Brunet, Juan Manuel Martinez, Fabien Dagnat and Nicolas Szlifierski,

Value Views: consistently conveying information between passes

Value Views are:

type safe llvm value containers: ValueView<BasicBlock>, ValueView<Function>, . . .

produced and consumed by Value Views aware passes
consistent over pass chaining

automatic updates through Value Handlers
special case for operands of instructions (no Use Handler)

prog.ll opt
Call Graph
flattening

{constants}

{dispatchers}

{callsites}

Opaque
Constants

Inlining

Post
Optims

prog.o

Value Views: consistently conveying information between passes

Value Views are:

type safe llvm value containers: ValueView<BasicBlock>, ValueView<Function>, . . .

produced and consumed by Value Views aware passes
consistent over pass chaining

automatic updates through Value Handlers
special case for operands of instructions (no Use Handler)

prog.ll opt
Call Graph
flattening

{constants}

{dispatchers}

{callsites}

Opaque
Constants

Inlining

Post
Optims

prog.o

Related work

Attributes

CHiLL (M. Hall et al.)

loops transformations scheduling
Decision algorithm based on loop transformation descriptions

Obfuscation Executive (K. Heffner & C. Collberg)

Dynamic pass manager
Goal: reach a terminating condition
Obfuscations are associated to a cost, a potency, pre- and post requirements, and
pre-and-post suggestions
The impact of randomness is not considered.

PyPS (S. Guelton)

Dynamic python pass manager API for the PIPS Fortran/C parallelizing compiler
Various levels of granularity (passes, modules, functions, loops, . . .)
Control through python control flow constructs allowed

Gaining fine-grain control over pass-management?

Achievements

Optsh: control over function and option selection
Properties: control over pass inputs filtering
Value views: control over pass input/output values and constants

Future work: A fine-grain scriptable Pass Manager

BBs = RandomChoices(F, BBcount)

for BB in BBs:

BB0 , BB1 , Cond = duplicateBB(BB)

opaqueZero(cond)

MBA(BB0 ,ratio=.5)

FloatBasedInteger(BB1 ,ratio=.5)

Dispatch ,BBs ,Csts = CFGFlattening(F)

OpaqueConstant(Csts , ratio=1)

...

PostOptimize(F)

