Automatic Source-to-Source
Optimizations using Machine
Learning

Maksim Berezov, Centre de recherche en informatique

Advisor:
Corinne Ancourt, MINES ParisTech CRI, PSL Research University

February 30, 2019

PSLk A

- MINES
UNIVERSITE PARIS ~Tech

Architecture

Application

AMDO
arTEROR
V]
b5

B it et g

Version n

Version 2

Version 1

Initial version

Perfomance

Context

« All possible transformations on a source code that produce an equivalent
code form an optimization set.

« To perform a beneficent optimization we need to know suitable values of the
parameters for each transformation (for example, for <loop unrolling>
transformation, we need to know <unrolling factor> parameter)

Execution time for vector multiplication with different
unrolling factors

Vector length = 1024

0.00007 -

000006 -

0.00005

000004 -

Execution time

0.00003 -

0.00002

000001 -

I I I I
0 200 400 eO0 BOO 1000
Unrolling factor

Source-to-Source transformations

The benefits of source-to-source transformations:
 Program remains understandable
 We can easily track the result

« Transformations step-by-step

The most interesting for us are operations related to loops.
Considering the transformation set is <unrolling, tiling, interchange>.

BPIPSw

https://pips4u.org/

Optimization complexity

Search space is very large:

m Is #transformations

S IS sequence size

Number of transformation sequences: ms

If we take order of transformations into account: s! * ms

Nalve Matmul Complexity

e Let’s consider a naive matrix multiplication algorithm and only 2
transformations (unrolling, tiling, interchange) for square 1024x1024

matrices

 Number of transformation sequences: ~ 6.59*10"12 (if all
transformations are legal, but they might be not)

 If we take order of transformations into account: 5! * 6.59*10"12

Why Machine Learning?

A lot of data from different sources (raw code, intermediate
representation, performance counters, etc)

Many heuristics work successfully in this domain which is a
prerequisite for smarter generalization

Large optimization space

What inputs can we use and what can

Prediction of the

we get”
Permormance e
counters T el P optimization
S sequence
v
Features collected F
during staticcode t-----. [| _ __. e Interasting
analysis W 0000 »| dependancies
“;z=-w Machine Leamning/ Deep Leaming model +----=---- o between features that
, have different nature
Handcrafted features A 4 ' s
that describe the | __ .-+
nature of our A A '. ‘.
program F, . \ v Search space
' : L reduction
: - %= ilmmEes »
s g s Smarter iterative
compilation

seguence of tokens

Optimization
seqguence

Cummins C. et al. End-to-end deep
learning of optimization heuristics

vold nbody_sim{__global floatd+ pos... [256, 28585172]

Source Code Auxilia rF(Inputs
l I [optional)

Source Rewriter

v

Sequence Encoder

Y
Embedding

I
I
I
I
I
I
I
v |
|
|
I
I
I

Language Model

LSTM

[concatenabe)

Batch Normalization

v
Dense NN

!

Predicted Optimization
Device mapping: {CPU,GPUY

Heuristic
Model

Cavazos J. et al. Rapidly selecting good
compiler optimizations using performance
counters

performance
counter fealures II/._
— f Y for the baseline
— A T (baseline option) X \"
'E“ el »
2
K= — best set of transformations o
E i {opiion sequences) Speatups
1 1 2
E >- tt, .. ty) » > Architecture '
E: el o1l < PCModel
o0 1o b e by . - =
T)ty oty SN
J r —
4

New program

Ti (baseline option)

predicied set of best

transformoffomns
L T Ay

k

Architectune

performance
counler features

for the baseline
X

hest
s peedups
Ba,
S

S
—_——

PChodel

Frameworks/ Tools

* PIPS: source-to-source compilation framework for analyzing and transforming
C and Fortran programs https://pips4u.org/

* Locus: language for program optimization *
* PAPI: Performance Application Programming Interface http://icl.utk.edu/papi/
« Scikit-learn: Machine Learning library for Python https://scikit-learn.org/stable/

« PyTorch: Deep Learning framework for Python https://pytorch.org/

* Thiago S. F. X. Teixeira, Corinne Ancourt, David Padua, and William Gropp. 2018.
Locus: A System and a Language for Program Optimization

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

