Automatic Source-to-Source
Optimizations using Machine
Learning

Maksim Berezov, Centre de recherche en informatique

Advisor:
Corinne Ancourt, MINES ParisTech CRI, PSL Research University

February 30, 2019

PSLk A

- MINES
UNIVERSITE PARIS ~Tech




Architecture

Application

AMDO
arTEROR
V]
b5

B it et g

Version n

Version 2

Version 1

Initial version

Perfomance




Context

« All possible transformations on a source code that produce an equivalent
code form an optimization set.

« To perform a beneficent optimization we need to know suitable values of the
parameters for each transformation (for example, for <loop unrolling>
transformation, we need to know <unrolling factor> parameter)
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Source-to-Source transformations

The benefits of source-to-source transformations:
 Program remains understandable
 We can easily track the result

« Transformations step-by-step

The most interesting for us are operations related to loops.
Considering the transformation set is <unrolling, tiling, interchange>.

BPIPSw

https://pips4u.org/



Optimization complexity

Search space is very large:

m Is #transformations

S IS sequence size

Number of transformation sequences: ms

If we take order of transformations into account: s! * ms



Nalve Matmul Complexity

e Let’s consider a naive matrix multiplication algorithm and only 2
transformations (unrolling, tiling, interchange) for square 1024x1024

matrices

 Number of transformation sequences: ~ 6.59*10"12 (if all
transformations are legal, but they might be not)

 If we take order of transformations into account: 5! * 6.59*10"12



Why Machine Learning?

A lot of data from different sources (raw code, intermediate
representation, performance counters, etc)

Many heuristics work successfully in this domain which is a
prerequisite for smarter generalization

Large optimization space



What inputs can we use and what can
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Cummins C. et al. End-to-end deep
learning of optimization heuristics
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Cavazos J. et al. Rapidly selecting good
compiler optimizations using performance
counters
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Frameworks/ Tools

* PIPS: source-to-source compilation framework for analyzing and transforming
C and Fortran programs https://pips4u.org/

* Locus: language for program optimization *
* PAPI: Performance Application Programming Interface http://icl.utk.edu/papi/
« Scikit-learn: Machine Learning library for Python https://scikit-learn.org/stable/

« PyTorch: Deep Learning framework for Python https://pytorch.org/

* Thiago S. F. X. Teixeira, Corinne Ancourt, David Padua, and William Gropp. 2018.
Locus: A System and a Language for Program Optimization



Thank you for your attention!
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