

Automatic Source-to-Source
Optimizations using Machine

Learning

Maksim Berezov, Centre de recherche en informatique

Advisor:
Corinne Ancourt, MINES ParisTech CRI, PSL Research University

February 30, 2019

Context

● All possible transformations on a source code that produce an equivalent
code form an optimization set.

● To perform a beneficent optimization we need to know suitable values of the
parameters for each transformation (for example, for <loop unrolling>
transformation, we need to know <unrolling factor> parameter)

Execution time for vector multiplication with different
unrolling factors

Source-to-Source transformations

The benefits of source-to-source transformations:

● Program remains understandable

● We can easily track the result

● Transformations step-by-step

The most interesting for us are operations related to loops.
Considering the transformation set is <unrolling, tiling, interchange>.

https://pips4u.org/

Optimization complexity

Search space is very large:

● m is #transformations

● s is sequence size

● Number of transformation sequences: ms

● If we take order of transformations into account: s! * ms

Naive Matmul Complexity

● Let’s consider a naive matrix multiplication algorithm and only 2
transformations (unrolling, tiling, interchange) for square 1024x1024
matrices

● Number of transformation sequences: ~ 6.59*10^12 (if all
transformations are legal, but they might be not)

● If we take order of transformations into account: 5! * 6.59*10^12

Why Machine Learning?

● A lot of data from different sources (raw code, intermediate
representation, performance counters, etc)

● Many heuristics work successfully in this domain which is a
prerequisite for smarter generalization

● Large optimization space

What inputs can we use and what can
we get?

Cummins C. et al. End-to-end deep
learning of optimization heuristics

Cavazos J. et al. Rapidly selecting good
compiler optimizations using performance

counters

Frameworks/ Tools

● PIPS: source-to-source compilation framework for analyzing and transforming
C and Fortran programs https://pips4u.org/

● Locus: language for program optimization *

● PAPI: Performance Application Programming Interface http://icl.utk.edu/papi/

● Scikit-learn: Machine Learning library for Python https://scikit-learn.org/stable/

● PyTorch: Deep Learning framework for Python https://pytorch.org/

 * Thiago S. F. X. Teixeira, Corinne Ancourt, David Padua, and William Gropp. 2018.
Locus: A System and a Language for Program Optimization

● PIPS: source-to-source compilation framework for analyzing and transforming
C and Fortran programs https://pips4u.org/

● Locus: language for program optimization *

● PAPI: Performance Application Programming Interface http://icl.utk.edu/papi/

● Scikit-learn: Machine Learning library for Python https://scikit-learn.org/stable/

● PyTorch: Deep Learning framework for Python https://pytorch.org/

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

