
The Dicer
Differential profiling for micro-architectural

performance optimization opportunities

Goals of performance analysis

1. Compiler optimizations
a. deterministically compute optimal machine code
b. accurately estimate quality of service
c. evaluate new optimization techniques

i. precisely compare against existing approaches
ii. detect problematic special cases

2. Assist programmers with optimization and debugging
a. detect poor utilization of hardware resources
b. compare semantically equivalent versions of a program

3. Automated program transformations
a. e.g., dynamic function specialization

Performance modeling: the ideal approach

1. Concise abstraction of a complete simulation
a. Correlates code elements with hardware execution paths
b. Indicates throughput and latency of hardware components
c. Accounts for rules that preserve execution correctness

2. Limited effectiveness in practice:
a. Requires detailed knowledge of hardware behaviors

i. Rarely published, difficult to discover or infer
b. Actual performance may depend on minute details:

i. Component functionality and capacity are often CPU-specific
ii. Circumstantial effects can become chained (domino effect)

1. e.g., cache conflict may lead to a pipeline stall
c. Special cases may have detrimental effects

Performance profiling: the practical alternative

1. Precise: reports real statistics about real executions
a. Does not rely on generalizations or speculative ideas
b. Easily updated after hardware/firmware changes
c. Often can be automated with simple, generic tools

2. Limitations of profiling in practice:
a. Results can be highly specific to the profiled environment
b. Detailed profiles may be difficult to interpret

i. Often too verbose for human readers
ii. Usually too vague for use in automated tools

c. Offers no guidance for improving performance behaviors
i. Essential problems may remain hidden
ii. Requires complex additional steps to reach conclusions

A spectrum of performance analysis

Modeling Profiling

the holy grail
the routine
workaround

Popular performance analysis tools

Modeling Profiling

Poly
he

dr
al

stu
ff

Cyc
le-

ac
cu

ra
te

sim
ula

tor
s (

ge
m5)

Per
f E

xp
er

t /
MAQAO

Cod
e A

na
lys

t

Dyn
am

oR
IO

 / P
in

/ V
alg

rin
d

OPro
file

 / g
pr

of
/ p

er
f

PAPI /
PCM / p

er
f A

PI

Roo
flin

e m
od

el
/ E

CM
PALM

MAO

Diffe
re

nti
al

pr
ofi

lin
g

The Dicer: self-adapting hybrid

Modeling Profiling

Poly
he

dr
al

stu
ff

Cyc
le-

ac
cu

ra
te

sim
ula

tor
s (

ge
m5)

Per
f E

xp
er

t /
MAQAO

Cod
e A

na
lys

t

Dyn
am

oR
IO

 / P
in

/ V
alg

rin
d

OPro
file

 / g
pr

of
/ p

er
f

PAPI /
PCM / p

er
f A

PI

Roo
flin

e m
od

el
/ E

CM
PALM

MAO

The Dicer

The Dicer: trivial machine model

1. Recognizes basic optimization functionality, e.g.:
a. cache hierarcy with n levels, s sets and w ways

i. some kind of eviction policy
ii. a limited capacity per set, per way, and global

b. instructions are decomposed into micro-ops for execution
i. each micro-op is eligible for a specific set of dispatch ports
ii. ports have capacity limits

2. Incomplete: cannot be applied without profile data
a. evaluates resource conflicts on a case-by-case basis

i. relies on hardware counters whenever possible
b. generates tests to confirm hypothesized conflicts

i. reports inconclusive analysis when results are vague

Two flavors of differential profiling

1. Chunking
a. detect macro conflicts: e.g.: cache, branch predictor
b. basic idea: measure performance of sub-programs

i. chop the trace into equal-sized trace chunks
ii. measure cache/branch predictor miss rate per chunk
iii. iterate each chunk having a high miss rate (record/replay)
iv. if miss rate drops, expand the chunk until miss rate elevates

2. Splicing
a. detect micro conflicts: e.g.: pipeline, hardware loop
b. basic idea: measure performance of program variations

i. hypothesize missed optimization opportunities (e.g., stalls)
ii. randomly transform representative chunk until it optimizes

Chunking example

startup init
calculation loop

output
analyze shapes detect overlap trim shapes

whole program trace

Chunking example

startup init
calculation loop

output
analyze shapes detect overlap trim shapes

whole program trace

45 20 74 43 35 12 22 30 64 43 53 65 74 59 4 8 68 73 31 29

1 1 1 40 8M 8M 8M 8M 8M 6M 6M 6M 6M 9M 9M 9M 9M 2K 2K 50

cache miss ratio

reuse potential (average # of loads per target address)

Chunking example

startup init
calculation loop

output
analyze shapes detect overlap trim shapes

whole program trace

45 20 74 43 35 12 22 30 64 43 53 65 74 59 4 8 68 73 31 29

1 1 1 40 8M 8M 8M 8M 8M 6M 6M 6M 6M 9M 9M 9M 9M 2K 2K 50

cache miss ratio

reuse potential (average # of loads per target address)

2 5 3 0 1 43 40 38 54 8 0 0 0

4 3 7 4

15 18 68

24

expanding chunk analysis

Two flavors of splicing

1. By comparison: isolate differences between executions
a. Align traces and demarcate major performance differences
b. Determine locality by iterating marked regions in isolation

i. if slowdown disappears, go to macro conflict analysis
c. Apply trivial machine model to detect possible causes
d. Splice cause-relevant elements of the fast run into the slow

i. Report changes having fast performance in the slow context
2. By model: search for typical optimization conflicts

a. Select theoretically optimizable regions of iterative code
b. Apply trivial machine model to hypothesize conflicts
c. Randomly generate conflict resolutions and profile them

i. Report resolutions that cross an optimization threshold

re
ad

-a
fte

r-
w

rit
e

re
ad

-a
fte

r-
w

rit
e

Splicing example

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (5 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

cache load

re
ad

-a
fte

r-
w

rit
e

w
rit

e-
af

te
r-

re
ad

cache stores

Hypothesis: cache miss here...

...causes a dependency stall...

...increasing pressure on a
 busy micro-op port...

...delaying loop iteration, and
 blocking instruction parallelism.

Case 1: some inputs run 50% slower

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (5 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

Splice test:

1. Generate a funclet to preload
cache with the %rbx targets

2. Start exection in the funclet
and continue into the loop

3. Measure execution time and
relevant performance counters

4. If the slow inputs now run fast,
the cache miss is the problem

Case 1: some inputs run 50% slower

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (5 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

Case 2: code change runs 50% slower

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (5 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (4 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

instruction has
been removed

original version new version

Case 2: code change runs 50% slower

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (5 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (4 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

instruction has
been removed

original version new version

Hypothesis: poor case for greedy parallelism (ILP)
1. micro-op port pressure delays the second mul
2. another instruction is ready before the second mul
3. CPU greedily dispatches the other instruction
4. the use of the mul result is now stalled
5. loop iterations are delayed by 3 cycles
6. hardware loop can no longer execute this code

Case 2: code change runs 50% slower

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (5 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

mov (%rbx), %rcx

... (4 instructions)

mul %rcx, %rsi

... (4 instructions)

mul %rbx, %rcx

... (3 instructions)

mov %rsi, (%r8)

mov %rcx, 0x8(%r8)

instruction has
been removed

original version new version

Splice test:
1. analyze the code for control dependencies

➢ missing instruction is not control relevant:
i. insert that instruction and verify it is retired
ii. measure hardware loop utilization

➢ missing instruction is control relevant:
i. try similar instructions (latency, port usage, etc)
ii. check consistency of other hardware counts
iii. measure hardware loop utilization

