
Code Optimisations and
Performance Models for MATLAB

Patryk Kiepas1,2, Claude Tadonki1, Corinne Ancourt1

Jaros law Koźlak2

1MINES ParisTech/PSL University

2AGH University of Science and Technology, Poland

January 30, 2019

1 / 28



Outline

Motivation – Why MATLAB?

Three approaches to speedup MATLAB

Code transformations
Loop coalescing
Loop interchange
Loop unrolling
Strength reduction (power)

Problem with vectorization

MATLAB is JIT compiling

Building an optimisation heuristics

Conclusions

2 / 28



MATLAB is popular

Figure: TIOBE Index for December 2018. https://www.tiobe.com/tiobe-index/

3 / 28

https://www.tiobe.com/tiobe-index/


Motivation

MATLAB

+ Dynamic language with simple and intuitive syntax

+ Great for fast-prototyping
I Built-ins: 2940 (R2018b)
I MATALB toolboxes: 66 (e.g. phased array, aerospace)

− Vendor lock-in, closed source

− Lack of formal semantics

− Performance is lagging behind other solutions

4 / 28



Performance comparison

C Julia LuaJIT Rust Go Fortran Java JavaScriptMatlab Mathematica Python R Octave

iteration_pi_sum
matrix_multiply
matrix_statistics
parse_integers
print_to_file
recursion_fibonacci
recursion_quicksort
userfunc_mandelbrot

benchmark

100

101

102

103

104

Figure: Julia Micro-Benchmarks. https://julialang.org/benchmarks/

5 / 28

https://julialang.org/benchmarks/


Three approaches to speedup MATLAB

MATLAB code C, C++, Fortran

MATLAB code
(optmized)

Third-party
interpreter

Translation

New interpretation

Transformation

6 / 28



Existing solutions

I New interpretation
I Scilab1

I Octave2

I MaJIC [Almasi and Padua, 2001]
I McVM [Chevalier-boisvert, 2009]

I Translation
I MATALB Coder (C) – official MathWork’s compiler
I SILKAN eVariX3 (C)
I Menhir (C) [Chauveau and Bodin, 1999]
I Mc2For (Fortran) [Chen et al., 2017]
I FALCON (Fortran) [DeRose et al., 1995]

I Transformation
I Mc2Mc [Chen et al., 2017] – performs vectorization

1https://www.scilab.org/
2https://www.gnu.org/software/octave/
3http://www.silkan.com/products/evarix/

7 / 28

https://www.scilab.org/
https://www.gnu.org/software/octave/
http://www.silkan.com/products/evarix/


Loop coalescing

Before:

for k = 1:N

for l = 1:M

a(l, k) = a(l, k) + c;

end

end

After:

for T = 1:(N .* M)

a(T) = a(T) + c;

end

MATLAB R2018b

MATLAB R2015b

MATLAB R2013a

0 300 600 900

0e+00

1e+09

2e+09

0e+00

2e+07

4e+07

0e+00

2e+06

4e+06

Iterations

To
ta

l c
yc

le
s

Version: Original loop Coalesced loop

Experiment setup: Ubuntu 16.04.5 LTS, Intel(R) Core(TM) i7−6600U CPU @ 2.60GHz, 16GB DDR4−2133MHz
Results with confidence intervals over 30 measurements with warmup phase consideration

Single−thread execution, measured with PAPI 5.6

Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance
computing. ACM Computing Surveys, 26(4), 345–420. 8 / 28



Loop interchange

Before:

for k = 1:N

for l = 1:M

total(k) = total(k) + a(k, l);

end

end

After:

for l = 1:M

for k = 1:N

total(k) = total(k) + a(k, l);

end

end

MATLAB R2018b

MATLAB R2015b

MATLAB R2013a

0 300 600 900

0.0e+00

5.0e+07

1.0e+08

1.5e+08

0e+00

2e+07

4e+07

6e+07

8e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

Iterations

To
ta

l c
yc

le
s

Version: Original loop Interchanged loops

Experiment setup: Ubuntu 16.04.5 LTS, Intel(R) Core(TM) i7−6600U CPU @ 2.60GHz, 16GB DDR4−2133MHz
Results with confidence intervals over 30 measurements with warmup phase consideration

Single−thread execution, measured with PAPI 5.6

Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance
computing. ACM Computing Surveys, 26(4), 345–420. 9 / 28



Loop unrolling

Before:

for k = 2:(N - 1)

a(k) = a(k) + a(k-1) .* a(k+1);

end

After:

for k = 2:2:(N - 2)

a(k) = a(k) + a(k-1) .* a(k+1);

a(k+1) = a(k+1) + a(k) .* a(k+2);

end

if mod((N-2), 2) == 1

a(N-1) = a(N-1) + a(N-2) .* a(N);

end

MATLAB R2018b

MATLAB R2015b

MATLAB R2013a

0 50000 100000 150000 200000

0e+00

1e+07

2e+07

3e+07

0e+00

1e+07

2e+07

0e+00

1e+06

2e+06

3e+06

Iterations

To
ta

l c
yc

le
s

Version: Original loop Unrolled loop

Experiment setup: Ubuntu 16.04.5 LTS, Intel(R) Core(TM) i7−6600U CPU @ 2.60GHz, 16GB DDR4−2133MHz
Results with confidence intervals over 30 measurements with warmup phase consideration

Single−thread execution, measured with PAPI 5.6

Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance
computing. ACM Computing Surveys, 26(4), 345–420. 10 / 28



Strength reduction (power)

Before:

for k = 1:N

a(k) = a(k) + c.^k;

end

After:

T = c;

for k = 1:N

a(k) = a(k) + T;

T = T .* c;

end

MATLAB R2018b

MATLAB R2015b

MATLAB R2013a

0 50000 100000 150000 200000

0e+00

2e+07

4e+07

6e+07

0e+00

2e+07

4e+07

0e+00

1e+07

2e+07

3e+07

Iterations

To
ta

l c
yc

le
s

Version: Original loop Simplified loop

Experiment setup: Ubuntu 16.04.5 LTS, Intel(R) Core(TM) i7−6600U CPU @ 2.60GHz, 16GB DDR4−2133MHz
Results with confidence intervals over 30 measurements with warmup phase consideration

Single−thread execution, measured with PAPI 5.6

Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance
computing. ACM Computing Surveys, 26(4), 345–420. 11 / 28



Vectorization in MATLAB

% scalar form

for i = 1:N

c(i)=a(i)*b(i)

end

% vector form

c(1:N)=a(1:N).*b(1:N)

% after simplification

c=a.*b

I For many years vectorization was a prevalent optimisation,
usually applied systematically

+ Performing more floating-point operations simultaneously

− Sometimes decreases performance in comparison to
JIT-compiled loops (Chen et al. 2017 and Kiepas et al. 2018)

12 / 28



Reproduction of [Chen et al., 2017]
I Benchmarks from Ostrich-suite4

I Vectorized with Mc2Mc
I Executed on MATLAB R2015b

Benchmark Dwarf Chen et al. Us

backprop unstructured grid 0.71 0.81
bs – 15.0 8.33

capr dense linear algebra 0.79 0.85
crni structured grid 0.83 0.81

fft spectral method 0.59 0.64
nw dynamic programming 0.96 1.00

pagerank Monte Carlo/MapReduce 0.94 0.94
mc Monte Carlo/MapReduce 2.02 2.22

spmv sparse linear algebra 0.013 0.02

Table: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB.
ARRAY 2018 (pp. 18–23).

4https://github.com/Sable/Ostrich2
13 / 28

https://github.com/Sable/Ostrich2


Is vectorization still relevant?

0 500 1000 1500 2000

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Iterations (data size)

S
p

e
e

d
u

p

Loop

crni1

backprop1

Baseline

Figure: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB.
ARRAY 2018 (pp. 18–23).

14 / 28



Improving Mc2Mc code generation

Range inlining

% From

k = 1:N;

B = A(k) + 2;

% To

B = A(1:N) + 2;

Range conversion

% From

B = A(2*(1:N) -1);

% To

B = A(1:2:(2*N-1));

Removing explicit index-all

% From

B(:) = A(1:end);

% To

B = A;

15 / 28



Profitable vectorization point (PV)

Loop Benchmark iterations PV iterations Improved PV iterations

backprop1 {17, 2850001} ∅ ≥ 255
backprop2 2 ≥ 4033 ≥ 257
backprop3 {17, 2850001} ∅ ≥ 385
backprop4 2 ∅ ≥ 257

capr1 8 ≥ 20 ≥ 17
capr2 20 ≥ 3329 ≥ 385
capr3 49 ≥ 5953 ≥ 321
crni1 2300 ≥ 161 ≥ 193
crni2 2300 ∅ ≥ 289
crni3 2300 ∅ ≥ 1217

fft1 256 ∅ ≥ 417
fft2 2, 4, 8 . . . 256 ∅ ≥ 129

nw1 4097 ∅ ≥ 65
nw2 4097 ≥ 1665 ≥ 257
nw3 4097 ≥ 7681 ≥ 193

pagerank1 1000 ∅ ≥ 273
spmv1 {2, 3} ≥ 6337 ≥ 321

Table: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB.
ARRAY 2018 (pp. 18–23).

16 / 28



Profile-guided vectorization

backprop crni fft nw pagerank

Strategy

Systematic

Selective (optimized)

Benchmark

S
p
e
e
d
u
p

0
.0

0
.5

1
.0

1
.5

2
.0

Baseline

Figure: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB.
ARRAY 2018 (pp. 18–23).

17 / 28



A bit of history of MATLAB

I Starts as an interpreter (1984)

I Introduces JIT along the interpreter around 6.5 (2002)

I Combines JIT with the interpreter in R2015b

I Introduces PGO (profile-driven optimisations) around R2018b

18 / 28



Warmup phase
Warmup is an observable effect of some JIT policy performing
compilation on a code. Policy is a set of rules if, when and how to
compile the code [Kulkarni 2011].

[Kulkarni 2011]: Kulkarni, P. A. (2011). JIT compilation policy for modern machines. ACM SIGPLAN Notices,
46(10), 773.

19 / 28



Warmup phase patterns

0 50 100 150 200 250 300

0.
32

0.
36

0.
40

backprop, R2018b, process #1 (warmup)

in−process iteration

tim
e 

[s
]

●

0 50 100 150 200 250 300

0.
12

0.
14

0.
16

0.
18

nqueens, R2015b, process #8 (warmup)

in−process iteration

tim
e 

[s
]

●

0 50 100 150 200 250 300

0.
33

5
0.

34
0

0.
34

5
0.

35
0

bubble, R2013a, process #1 (slowdown)

in−process iteration

tim
e 

[s
]

●

The patterns come in different flavours [Barrett et al. 2017]:

I Warmup

I Slowdown

I Flat

I Inconsistent
[Barrett et al. 2017]: Barrett, E., Bolz-Tereick, C. F., Killick, R., Mount, S., & Tratt, L. (2017). Virtual machine
warmup blows hot and cold. Proceedings of the ACM on Programming Languages, vol. 1 (Issue OOPSLA), 1–27.

20 / 28



About our heuristics

Our heuristics is a binary choice (optimise – positive / do nothing
– negative) that takes into consideration the code, trip count
and/or the machine’s properties.

Designing goal

Prefer being conservative (false negatives FN are OK) than
optimising wrongly (false positives FP > 0).

precision =
TP

TP + FP
→ 1 (1)

However, too much FN means we are optimising only a little!

21 / 28



1. Handcrafted optimisation heuristics

We pose a question: What does vectorization change?

Store instructions (PAPI_SR_INS) Cycles with no instruction finished (PAPI_STL_CCY)

Conditional branches (PAPI_BR_CN) Load instructions (PAPI_LD_INS)

0 100 200 300 400 0 100 200 300 400

1

2

3

4

5

1

2

3

4

5

Iterations

R
at

io
 o

f c
ha

ng
e 

af
te

r 
ve

ct
or

iz
at

io
n

TSVC/s1115/MATLAB R2013a 

Experiment setup: Ubuntu 16.04.5 LTS, Intel(R) Core(TM) i7−6600U CPU @ 2.60GHz, 16GB DDR4−2133MHz
Results from 30 measurements with warmup phase consideration

Single−thread execution, measured with PAPI 5.6

22 / 28



Precision

60.0%

70.0%

80.0%

90.0%

100.0%

0.0 0.5 1.0 1.5 2.0

Threshold

P
re

ci
si

on

Ratio of change

Loads

Stores

Branches

Stalls

Precison of handcrafted heuristics; TSVC Benchmark Suite; R2013a

23 / 28



2. Automatic dynamic model

Followed by the work of [Cavazos et al., 2007] – we have build a
model using machine learning and dynamic set of features
(performance counters).

Methodology

1. Collecting performance counters (TSVC Benchmark Suite)

2. Normalising (by PAPI TOT INS, hybrid)

3. Oversampling for dealing with class imbalance

4. Training on TSVC, testing on LCPC16 [Chen et al., 2017]

5. Only out-of-the-box components, no fine-tuning
(meta-learning, hyper parameter optimisations)

[Cavazos et al. 2007]: Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M. F. P., & Temam, O. (2007).
Rapidly Selecting Good Compiler Optimizations using Performance Counters. CGO’07 (pp. 185–197).

.

24 / 28



Evaluation

Test Metrics AdaBoost Decision Tree (CART)

TSVC (Cross-validation5)
Precision (%) 96.63 % 97.02 %
Accuracy (%) 94.38 % 93.95 %

LCPC16 Test set
Precision (%) 99.51 % 99.36 %
Accuracy (%) 92.85 % 72.26 %

510-folds
25 / 28



Decision tree

N ≤ 361.0
entropy = 0.647
samples = 1652

value = [273, 1379]
class = VECTORIZE

N ≤ 63.5
entropy = 0.965
samples = 394

value = [240, 154]
class = NOTHING

True

PAPI_L2_ICM ≤ 0.008
entropy = 0.175
samples = 1258

value = [33, 1225]
class = VECTORIZE

False

PAPI_BR_MSP ≤ 0.002
entropy = 0.32
samples = 155
value = [146, 9]

class = NOTHING

PAPI_STL_ICY ≤ 0.163
entropy = 0.967
samples = 239

value = [94, 145]
class = VECTORIZE

PAPI_STL_CCY ≤ 0.069
entropy = 0.177
samples = 150
value = [146, 4]

class = NOTHING

entropy = 0.0
samples = 5
value = [0, 5]

class = VECTORIZE

entropy = 0.0
samples = 3
value = [0, 3]

class = VECTORIZE

PAPI_BR_CN ≤ 0.202
entropy = 0.059
samples = 147
value = [146, 1]

class = NOTHING

entropy = 0.0
samples = 146
value = [146, 0]

class = NOTHING

entropy = 0.0
samples = 1
value = [0, 1]

class = VECTORIZE

PAPI_STL_ICY ≤ 0.002
entropy = 0.889
samples = 209

value = [64, 145]
class = VECTORIZE

entropy = 0.0
samples = 30
value = [30, 0]

class = NOTHING

FP_ARITH:SCALAR_DOUBLE ≤ 0.012
entropy = 0.449
samples = 64
value = [6, 58]

class = VECTORIZE

PAPI_L1_STM ≤ 0.0
entropy = 0.971
samples = 145
value = [58, 87]

class = VECTORIZE

PAPI_SR_INS ≤ 0.148
entropy = 0.211
samples = 60
value = [2, 58]

class = VECTORIZE

entropy = 0.0
samples = 4
value = [4, 0]

class = NOTHING

entropy = 0.0
samples = 2
value = [2, 0]

class = NOTHING

entropy = 0.0
samples = 58
value = [0, 58]

class = VECTORIZE

PAPI_PRF_DM ≤ 0.001
entropy = 0.559
samples = 23
value = [20, 3]

class = NOTHING

PAPI_BR_CN ≤ 0.123
entropy = 0.895
samples = 122
value = [38, 84]

class = VECTORIZE

entropy = 0.0
samples = 20
value = [20, 0]

class = NOTHING

entropy = 0.0
samples = 3
value = [0, 3]

class = VECTORIZE

PAPI_TLB_DM ≤ 0.001
entropy = 0.573
samples = 59
value = [8, 51]

class = VECTORIZE

PAPI_L1_STM ≤ 0.0
entropy = 0.998
samples = 63

value = [30, 33]
class = VECTORIZE

N ≤ 134.0
entropy = 0.485
samples = 57
value = [6, 51]

class = VECTORIZE

entropy = 0.0
samples = 2
value = [2, 0]

class = NOTHING

PAPI_STL_CCY ≤ 0.072
entropy = 1.0
samples = 6
value = [3, 3]

class = NOTHING

PAPI_FUL_ICY ≤ 0.173
entropy = 0.323
samples = 51
value = [3, 48]

class = VECTORIZE

entropy = 0.0
samples = 3
value = [0, 3]

class = VECTORIZE

entropy = 0.0
samples = 3
value = [3, 0]

class = NOTHING

PAPI_BR_UCN ≤ 0.07
entropy = 0.575
samples = 22
value = [3, 19]

class = VECTORIZE

entropy = 0.0
samples = 29
value = [0, 29]

class = VECTORIZE

PAPI_BR_CN ≤ 0.123
entropy = 0.881
samples = 10
value = [3, 7]

class = VECTORIZE

entropy = 0.0
samples = 12
value = [0, 12]

class = VECTORIZE

PAPI_L2_LDM ≤ 0.002
entropy = 0.811

samples = 4
value = [3, 1]

class = NOTHING

entropy = 0.0
samples = 6
value = [0, 6]

class = VECTORIZE

entropy = 0.0
samples = 3
value = [3, 0]

class = NOTHING

entropy = 0.0
samples = 1
value = [0, 1]

class = VECTORIZE

PAPI_PRF_DM ≤ 0.001
entropy = 0.764
samples = 36
value = [8, 28]

class = VECTORIZE

PAPI_STL_CCY ≤ 0.204
entropy = 0.691
samples = 27
value = [22, 5]

class = NOTHING

PAPI_BR_CN ≤ 0.135
entropy = 0.985
samples = 14
value = [8, 6]

class = NOTHING

entropy = 0.0
samples = 22
value = [0, 22]

class = VECTORIZE

entropy = 0.0
samples = 6
value = [0, 6]

class = VECTORIZE

entropy = 0.0
samples = 8
value = [8, 0]

class = NOTHING

PAPI_STL_CCY ≤ 0.077
entropy = 0.961
samples = 13
value = [8, 5]

class = NOTHING

entropy = 0.0
samples = 14
value = [14, 0]

class = NOTHING

entropy = 0.0
samples = 6
value = [6, 0]

class = NOTHING

PAPI_MEM_WCY ≤ 0.0
entropy = 0.863

samples = 7
value = [2, 5]

class = VECTORIZE

entropy = 0.0
samples = 2
value = [2, 0]

class = NOTHING

entropy = 0.0
samples = 5
value = [0, 5]

class = VECTORIZE

N ≤ 921.0
entropy = 0.058
samples = 1190
value = [8, 1182]

class = VECTORIZE

PAPI_TLB_DM ≤ 0.0
entropy = 0.949
samples = 68

value = [25, 43]
class = VECTORIZE

PAPI_BR_CN ≤ 0.124
entropy = 0.305
samples = 147
value = [8, 139]

class = VECTORIZE

entropy = 0.0
samples = 1043
value = [0, 1043]

class = VECTORIZE

entropy = 0.0
samples = 85
value = [0, 85]

class = VECTORIZE

PAPI_BR_CN ≤ 0.126
entropy = 0.555
samples = 62
value = [8, 54]

class = VECTORIZE

entropy = 0.0
samples = 5
value = [5, 0]

class = NOTHING

FP_ARITH:SCALAR_DOUBLE ≤ 0.011
entropy = 0.297
samples = 57
value = [3, 54]

class = VECTORIZE

entropy = 0.0
samples = 41
value = [0, 41]

class = VECTORIZE

PAPI_FUL_ICY ≤ 0.171
entropy = 0.696
samples = 16
value = [3, 13]

class = VECTORIZE

entropy = 0.0
samples = 8
value = [0, 8]

class = VECTORIZE

PAPI_LD_INS ≤ 0.302
entropy = 0.954

samples = 8
value = [3, 5]

class = VECTORIZE

PAPI_PRF_DM ≤ 0.004
entropy = 0.65
samples = 6
value = [1, 5]

class = VECTORIZE

entropy = 0.0
samples = 2
value = [2, 0]

class = NOTHING

entropy = 0.0
samples = 5
value = [0, 5]

class = VECTORIZE

entropy = 0.0
samples = 1
value = [1, 0]

class = NOTHING

PAPI_L2_DCM ≤ 0.04
entropy = 0.276
samples = 21
value = [1, 20]

class = VECTORIZE

PAPI_LD_INS ≤ 0.308
entropy = 1.0
samples = 47

value = [24, 23]
class = NOTHING

entropy = 0.0
samples = 20
value = [0, 20]

class = VECTORIZE

entropy = 0.0
samples = 1
value = [1, 0]

class = NOTHING

PAPI_BR_CN ≤ 0.19
entropy = 0.907
samples = 31

value = [21, 10]
class = NOTHING

PAPI_STL_ICY ≤ 0.15
entropy = 0.696
samples = 16
value = [3, 13]

class = VECTORIZE

PAPI_BR_MSP ≤ 0.0
entropy = 0.811
samples = 28
value = [21, 7]

class = NOTHING

entropy = 0.0
samples = 3
value = [0, 3]

class = VECTORIZE

entropy = 0.0
samples = 12
value = [12, 0]

class = NOTHING

N ≤ 872.0
entropy = 0.989
samples = 16
value = [9, 7]

class = NOTHING

FP_ARITH:SCALAR_DOUBLE ≤ 0.042
entropy = 0.811
samples = 12
value = [9, 3]

class = NOTHING

entropy = 0.0
samples = 4
value = [0, 4]

class = VECTORIZE

PAPI_BR_MSP ≤ 0.001
entropy = 1.0
samples = 6
value = [3, 3]

class = NOTHING

entropy = 0.0
samples = 6
value = [6, 0]

class = NOTHING

entropy = 0.0
samples = 2
value = [0, 2]

class = VECTORIZE

PAPI_RES_STL ≤ 9.646
entropy = 0.811

samples = 4
value = [3, 1]

class = NOTHING

entropy = 0.0
samples = 3
value = [3, 0]

class = NOTHING

entropy = 0.0
samples = 1
value = [0, 1]

class = VECTORIZE

entropy = 0.0
samples = 12
value = [0, 12]

class = VECTORIZE

PAPI_RES_STL ≤ 0.512
entropy = 0.811

samples = 4
value = [3, 1]

class = NOTHING

entropy = 0.0
samples = 3
value = [3, 0]

class = NOTHING

entropy = 0.0
samples = 1
value = [0, 1]

class = VECTORIZE

26 / 28



3. Automatic static model

Image: Cummins, C., Petoumenos, P., Wang, Z., and Leather, H.
(2017). End-to-End Deep Learning of Optimization Heuristics. In
2017 26th IEEE International Conference on Parallel Architectures and
Compilation Techniques (PACT). [Cummins et al., 2017]

I Sequences of codes are
the input

I Auxiliary inputs: number
of iterations

I No dynamic features

I In order to force learning
from sequences – shorten
sequences (less padding)

I Small precision – more
data? Around 1652 data
points, but only 118 code
sequences.

27 / 28



Conclusions

I Working optimisation heuristics without opening the
MATLAB’s black-box (which might be infeasible)

I Deeper understanding of how to measure MATLAB’s
performance

I Perspective: fine-tuning of models and extending evaluation
for other machines and versions of MATLAB

Thank you!

28 / 28



Almasi, G. and Padua, D. (2001).
MaJIC: A Matlab just-in-time Compiler.
In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 2017, pages 68–81.

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle,
M. F., and Temam, O. (2007).
Rapidly Selecting Good Compiler Optimizations using
Performance Counters.
In International Symposium on Code Generation and
Optimization (CGO’07), pages 185–197. IEEE.

Chauveau, S. and Bodin, F. (1999).
Menhir: An Environment for High Performance Matlab.
Scientific Programming, 7(3-4):303–312.

Chen, H., Krolik, A., Lavoie, E., and Hendren, L. (2017).
Automatic Vectorization for MATLAB.

28 / 28



In Ding, C., Criswell, J., and Wu, P., editors, Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 10136 LNCS of Lecture Notes in Computer Science,
pages 171–187. Springer International Publishing, Cham.

Chevalier-boisvert, M. (2009).
MCVM : An Optimizing Virtual Machine for The MATLAB
Programming Language.

Cummins, C., Petoumenos, P., Wang, Z., and Leather, H.
(2017).
End-to-End Deep Learning of Optimization Heuristics.
In 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), volume
2017-Septe, pages 219–232. IEEE.

DeRose, L., Gallivan, K., Gallopoulos, E., Marsolf, B. A., and
Padua, D. (1995).
FALCON: An Environment for the Development of Scientific
Libraries and Applications.

28 / 28



Proc. First International Workshop on Knowledge-Based
System for the (re)Use of Program Libraries, (November).

28 / 28


	Motivation – Why MATLAB?
	Three approaches to speedup MATLAB
	Code transformations
	Loop coalescing
	Loop interchange
	Loop unrolling
	Strength reduction (power)

	Problem with vectorization
	MATLAB is JIT compiling
	Building an optimisation heuristics
	Conclusions

