Code Optimisations and Performance Models for MATLAB

Patryk Kiepas^{1,2}, Claude Tadonki¹, Corinne Ancourt¹ Jarosław Koźlak²

¹MINES ParisTech/PSL University

²AGH University of Science and Technology, Poland

January 30, 2019

Outline

Motivation - Why MATLAB?

Three approaches to speedup MATLAB

Code transformations

Loop coalescing Loop interchange Loop unrolling Strength reduction (power)

Problem with vectorization

MATLAB is JIT compiling

Building an optimisation heuristics

Conclusions

MATLAB is popular

Dec 2018	Dec 2017	Change	Programming Language	Ratings	Change
1	1		Java	15.932%	+2.66%
2	2		С	14.282%	+4.12%
3	4	^	Python	8.376%	+4.60%
4	3	~	C++	7.562%	+2.84%
5	7	^	Visual Basic .NET	7.127%	+4.66%
6	5	~	C#	3.455%	+0.63%
7	6	~	JavaScript	3.063%	+0.59%
8	9	^	PHP	2.442%	+0.85%
9	-	*	SQL	2.184%	+2.18%
10	12	^	Objective-C	1.477%	-0.02%
11	16	*	Delphi/Object Pascal	1.396%	+0.00%
12	13	^	Assembly language	1.371%	-0.10%
13	10	*	MATLAB	1.283%	-0.29%
14	11	~	Swift	1.220%	-0.35%

Figure: TIOBE Index for December 2018. https://www.tiobe.com/tiobe-index/

Motivation

MATLAB

- $+\,$ Dynamic language with simple and intuitive syntax
- + Great for fast-prototyping
 - Built-ins: 2940 (R2018b)
 - MATALB toolboxes: 66 (e.g. phased array, aerospace)
- Vendor lock-in, closed source
- Lack of formal semantics
- Performance is lagging behind other solutions

Performance comparison

Figure: Julia Micro-Benchmarks. https://julialang.org/benchmarks/

Three approaches to speedup MATLAB

Existing solutions

- New interpretation
 - Scilab¹
 - Octave²
 - MaJIC [Almasi and Padua, 2001]
 - McVM [Chevalier-boisvert, 2009]
- Translation
 - MATALB Coder (C) official MathWork's compiler
 - SILKAN eVariX³ (C)
 - Menhir (C) [Chauveau and Bodin, 1999]
 - Mc2For (Fortran) [Chen et al., 2017]
 - FALCON (Fortran) [DeRose et al., 1995]
- Transformation
 - Mc2Mc [Chen et al., 2017] performs vectorization

³http://www.silkan.com/products/evarix/

¹https://www.scilab.org/

²https://www.gnu.org/software/octave/

Loop coalescing

Before:

```
for k = 1:N
  for l = 1:M
    a(l, k) = a(l, k) + c;
  end
end
```

After:

```
for T = 1:(N .* M)
a(T) = a(T) + c;
end
```


Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance computing. ACM Computing Surveys, 26(4), 345–420.

Loop interchange

Before: for k = 1:Nfor 1 = 1:Mtotal(k) = total(k) + a(k, 1);end end After: for 1 = 1:Mfor k = 1:Ntotal(k) = total(k) + a(k, 1);end end

Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance computing. ACM Computing Surveys, 26(4), 345–420.

Loop unrolling

Before:

for
$$k = 2:(N - 1)$$

a(k) = a(k) + a(k-1) .* a(k+1);
end

After:

for
$$k = 2:2:(N - 2)$$

 $a(k) = a(k) + a(k-1) .* a(k+1);$
 $a(k+1) = a(k+1) + a(k) .* a(k+2);$
end

Single-thread execution, measured with PAPI 5.6

Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance computing. ACM Computing Surveys, 26(4), 345–420.

Strength reduction (power)

Before:

for
$$k = 1:N$$

a(k) = a(k) + c.^k;
end

After:

$$T = c;$$

for k = 1:N
 $a(k) = a(k) + T;$
 $T = T .* c;$
end

Example: Bacon, D. F., Graham, S. L., & Sharp, O. J. (1994). Compiler transformations for high-performance computing. ACM Computing Surveys, 26(4), 345–420. Vectorization in MATLAB

```
% scalar form
for i = 1:N
    c(i)=a(i)*b(i)
end
% vector form
c(1:N)=a(1:N).*b(1:N)
% after simplification
c=a.*b
```

- For many years vectorization was a prevalent optimisation, usually applied systematically
- + Performing more floating-point operations simultaneously
- Sometimes decreases performance in comparison to JIT-compiled loops (Chen et al. 2017 and Kiepas et al. 2018)

Reproduction of [Chen et al., 2017]

- Benchmarks from Ostrich-suite⁴
- Vectorized with Mc2Mc
- Executed on MATLAB R2015b

Benchmark	Dwarf	Chen et al.	Us
backprop	unstructured grid	0.71	0.81
bs	-	15.0	8.33
capr	dense linear algebra	0.79	0.85
crni	structured grid	0.83	0.81
fft	spectral method	0.59	0.64
nw	dynamic programming	0.96	1.00
pagerank	Monte Carlo/MapReduce	0.94	0.94
тс	Monte Carlo/MapReduce	2.02	2.22
spmv	sparse linear algebra	0.013	0.02

Table: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB. ARRAY 2018 (pp. 18–23).

⁴https://github.com/Sable/Ostrich2

Is vectorization still relevant?

Figure: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB. ARRAY 2018 (pp. 18–23).

Improving Mc2Mc code generation

Range inlining

% From
k = 1:N;
B = A(k) + 2;
% To
B = A(1:N) + 2;

Range conversion

Removing explicit index-all

```
% From
B(:) = A(1:end);
% To
B = A;
```

Profitable vectorization point (PV)

Loop	Benchmark iterations	PV iterations	Improved PV iterations
backprop1	{17,2850001}	Ø	≥ 255
backprop2	2	\geq 4033	≥ 257
backprop3	$\{17, 2850001\}$	Ø	\geq 385
backprop4	2	Ø	≥ 257
capr1	8	\geq 20	≥ 17
capr2	20	\geq 3329	\geq 385
capr3	49	\geq 5953	\geq 321
crni1	2300	\geq 161	\geq 193
crni2	2300	Ø	\geq 289
crni3	2300	Ø	\geq 1217
fft1	256	Ø	\geq 417
fft2	2, 4, 8256	Ø	\geq 129
nw1	4097	Ø	\geq 65
nw2	4097	≥ 1665	≥ 257
nw3	4097	\geq 7681	\geq 193
pagerank1	1000	Ø	≥ 273
spmv1	$\{2, 3\}$	\geq 6337	\geq 321

Table: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB. ARRAY 2018 (pp. 18–23).

Profile-guided vectorization

Figure: Kiepas, P., Kozlak, J., Tadonki, C., & Ancourt, C. (2018). Profile-based vectorization for MATLAB. ARRAY 2018 (pp. 18–23).

A bit of history of MATLAB

- Starts as an interpreter (1984)
- Introduces JIT along the interpreter around 6.5 (2002)
- Combines JIT with the interpreter in R2015b
- Introduces PGO (profile-driven optimisations) around R2018b

Warmup phase

Warmup is an observable effect of some JIT policy performing compilation on a code. Policy is a set of rules *if, when* and *how* to compile the code [Kulkarni 2011].

[Kulkarni 2011]: Kulkarni, P. A. (2011). JIT compilation policy for modern machines. ACM SIGPLAN Notices, 46(10), 773.

Warmup phase patterns

The patterns come in different flavours [Barrett et al. 2017]:

- Warmup
- Slowdown
- Flat

Inconsistent

[Barrett et al. 2017]: Barrett, E., Bolz-Tereick, C. F., Killick, R., Mount, S., & Tratt, L. (2017). Virtual machine warmup blows hot and cold. Proceedings of the ACM on Programming Languages, vol. 1 (Issue OOPSLA), 1–27.

About our heuristics

Our heuristics is a binary choice (*optimise – positive / do nothing –* negative) that takes into consideration the code, trip count and/or the machine's properties.

Designing goal

Prefer being conservative (false negatives FN are OK) than optimising wrongly (false positives FP > 0).

$$precision = \frac{TP}{TP + FP} \to 1 \tag{1}$$

However, too much FN means we are optimising only a little!

1. Handcrafted optimisation heuristics

We pose a question: What does vectorization change?

Single-thread execution, measured with PAPI 5.6

Precision

2. Automatic dynamic model

Followed by the work of [Cavazos et al., 2007] – we have build a model using machine learning and dynamic set of features (performance counters).

Methodology

- 1. Collecting performance counters (TSVC Benchmark Suite)
- 2. Normalising (by PAPI_TOT_INS, hybrid)
- 3. Oversampling for dealing with class imbalance
- 4. Training on TSVC, testing on LCPC16 [Chen et al., 2017]
- 5. Only out-of-the-box components, no fine-tuning (meta-learning, hyper parameter optimisations)

[Cavazos et al. 2007]: Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O'Boyle, M. F. P., & Temam, O. (2007). Rapidly Selecting Good Compiler Optimizations using Performance Counters. CGO'07 (pp. 185–197).

Evaluation

Test	Metrics	AdaBoost	Decision Tree (CART)
TSVC (Cross-validation ⁵)	Precision (%)	96.63 %	97.02 %
	Accuracy (%)	94.38 %	93.95 %
LCPC16 Test set	Precision (%)	99.51 %	99.36 %
	Accuracy (%)	92.85 %	72.26 %

Decision tree

3. Automatic static model

Image: Cummins, C., Petoumenos, P., Wang, Z., and Leather, H. (2017). End-to-End Deep Learning of Optimization Heuristics. In 2017 26th IEEE International Conference on Parallel Architectures and Compilation Techniques (PACT). [Cummins et al., 2017]

- Sequences of codes are the input
- Auxiliary inputs: number of iterations
- No dynamic features
- In order to force learning from sequences – shorten sequences (less padding)
- Small precision more data? Around 1652 data points, but only 118 code sequences.

Conclusions

- Working optimisation heuristics without opening the MATLAB's black-box (which might be infeasible)
- Deeper understanding of how to measure MATLAB's performance
- Perspective: fine-tuning of models and extending evaluation for other machines and versions of MATLAB

Thank you!

Almasi, G. and Padua, D. (2001). MaJIC: A Matlab just-in-time Compiler.

In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 2017, pages 68–81.

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O'Boyle, M. F., and Temam, O. (2007). Rapidly Selecting Good Compiler Optimizations using Performance Counters.

In International Symposium on Code Generation and Optimization (CGO'07), pages 185–197. IEEE.

Chauveau, S. and Bodin, F. (1999). Menhir: An Environment for High Performance Matlab. *Scientific Programming*, 7(3-4):303–312.

Chen, H., Krolik, A., Lavoie, E., and Hendren, L. (2017). Automatic Vectorization for MATLAB. In Ding, C., Criswell, J., and Wu, P., editors, *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, volume 10136 LNCS of *Lecture Notes in Computer Science*, pages 171–187. Springer International Publishing, Cham.

- Chevalier-boisvert, M. (2009). MCVM : An Optimizing Virtual Machine for The MATLAB Programming Language.
- Cummins, C., Petoumenos, P., Wang, Z., and Leather, H. (2017).
 End-to-End Deep Learning of Optimization Heuristics.
 In 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT), volume 2017-Septe, pages 219–232. IEEE.
- DeRose, L., Gallivan, K., Gallopoulos, E., Marsolf, B. A., and Padua, D. (1995).
 FALCON: An Environment for the Development of Scientific Libraries and Applications.

Proc. First International Workshop on Knowledge-Based System for the (re)Use of Program Libraries, (November).